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ABSTRACT

This dissertation considers the problem (usually called the shaping

filter problem) of synthesizing linear systems whose responses to white noise

input processes and appropriate sets of random initial conditions will be

stochastic processes whose covariance functions are prescribed functions of

two variables.

A detailed review of previous work on this problem is presented and the

limitations of and the errors in this previous work are carefully pointed out.

The properties of weighting functions of systems characterizable by finite-

order linear differential equations are developed in detail and these results

are used to develop the properties of the covariance functions of the responses

of such systems to white noise inputs and random initial conditions.

Based on this work, exact solutions to the shaping filter problem are

presented for certain special cases and some discussion of predictability of the

processes is presented. Attention is then focused on the general problem and by

means of the Schauder Fixed Point Theorem and by Picard's method of successive

approximations the existence of physically realizable shaping filters is estab-

lished for a large class of separable covariance functions. The question of the

uniqueness of the shaping filter and its relationship to the covariance matrix

of the set of random initial conditions is investigated. It is shown that if

an appropriate set of random initial conditions is specified, then the weighting

function of the shaping filter is unique up to a multiplicative factor of 1 1.

The further requirements on the covariance function in order to guarantee that

the shaping filter can be characterized by a finite-order, linear differential

equation with continuous coefficients are given as well as certain lesser re-

quirements which permit easy analog simulation.

Some brief comments are made relative to computational requirements and

how they can best be carried out and the pertinent references are cited. Finally

the two main areas of applications of shaping filters are briefly outlined..
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CHAPTER 1

INTRODUCTION

1.1 A qFNERAL DESCRIPTION OF TIlE PROBLEM

A problem of some current interest in the field of stochastic processes

can be described briefly as follows, (see Figure 1).

RANDOM INITIAL
CONDITIONS

{Y (t) * F i' SldI-* {X(t)}

FIGURE 1

Given the covariance function P(t1 ,t2 ) of some continuous in the mean stochas-

tic process, determine the weighting function and/or differential equation, if

appropriate, of a continuous, physically realizable, linear system and the co-

variances of a set of random initial conditions, if required, such that the

response {X(t)) of the system to a white noise input process (Y(t)) and the set

of random initial conditions will be a stochastic process whose covariance

function 1XX(tpt~ 2 ) satisfies the equality F 1 (tlft 2 )  r(t 1,t2 ). This problem

which will be referred to from hereon as the shaping filter problem, has not

yet been solved for the general case where F(t1 ,t2 ) is an arbitrary continuous

covariance function; i.e., an arbitrary, bounded, nonnegative-definite, con-

tinuous function defined on a region T X T of the real plane where T is an

interval of the real line. lowever, by suitably restricting the class of ad-

missible covariance functions and the interval T, certain fairly definitive

results have been obtained. These results are summarized in the following

section.

This dissertation is devoted to a study of the shaping filter problem

for the class of separable covariance functions, where T is a finite or semi-

infinite (to the right) interval, and to the relationship between the properties

of the covariance function and the possibility of characterizing the shapir.g

filter by a finite-order, linear differential equation. Particular emphasis

is placed on the goal of obtaining the solution to the problem in a form

fThere in, of course, a related problem for discrete parmeter stochastic processes; but, since these

two problems are quite closely related, attention herein is directed primarily to the continuous
parioeter case.
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directly applicable in engineering practice, as is proper for a dissertation

in engineering. Finally, the applications of the solution to the shaping

filter problem to the problems of analog simulation and linear, least-squares

filtering is discussed.

1.2 HISTORICAL REVIEW OF TIlE SHAPING FILTER PROBLEM

In order to place the results obtained in this dissertation in proper

perspective, it is necessary to have a precise summary of all significant pre-

viously published works on the shaping filter problem. However, before such

a summary is given, a brief chronological sketch of this work is in order.

The first significant result relative to the shaping filter problem was

apparently obtained by Wold [1,1938] for discrete parameter stationary* pro-

cesses and is part of his fundamental decomposition theorem [I.p.89]. Kolmogorov

[2,1939; 3,1941; 4,1941] then put Wold's decomposition theorem in an analytic

setting and obtained some new theorems for discrete parameter stationary pro-

cesses, parts of which again pertain to the shaping filter problem. Indepen-

dently, Wiener [5,1942] obtained Kolmogorov's results for discrete parameter

stationary processes with absolutely continuous spectral distribution functions

and generalized the results to include continuous parameter stationary processes

with absolutely continuous spectral distribution functions. Wiener obtained

thereby, as part of his results, the first solution of the shaping filter pro-

blem for continuous parameter stationary processes. Then Hanner [6,1949] end

Karhumen [7,1950] obtained, by different methods, the continuous parameter

analog of the Wold decomposition theorem, parts of which again pertain to the

shaping filter problem. Bode and Shannon [8,1950], in their simplified heu-

ristic derivation of Wiener's results on linear, least-squares, prediction and

filtering theory stressed the solution of the shaping filter problem as an

important step in their method. The next significant result relative to the

shaping filter problem was obtained by Darlington [9,1959] in his generaliza-

tion of Bode and Shannon's work so as to include nonstationary processes.

While Darlington did make a good start on the problem for continuous parameter

nonaitationary processes, he did not obtain very useful results as will be clear

from later discussion. Two months later, Batkov [10,1959] published a paper

which presents three methods for solving the shaping filter problem, including

an algebraic method using various partial derivatives of the covariance func-

tion, for a certain class of continuous parameter nonstationary processes. As

will be shown later, Batkov's algebraic procedure only works for a rather

Stationry should always be interpreted as "wide-sense stationary".



specialized subclass of the class claimed. Later in the same year, Sondhi and

Higgins [11,1959) presented a solution to a modified form of the shaping filter

problem requiring the use of several white noise sources. Nothing more will be

said of this work because interest in this dissertation is restricted to the

use of one white noise input process. Finally, Leonov [12,1960] presented a

rather nice mathematical solution to the shaping filter problem for continuous

parameter processes (both stationary and nonstationary) in terms of expansions

in orthogonal functions.

In the following paragraphs a precise critical summary of the above

mentioned work will be given.

1.2.1 Summary of Previous Work for Stationary Processes

Since no useful purpose would be served by it insofar as this dissertation

is concerned, no attempt will be made to summarize the previous work for sta-

tionary processes individually as cited in the chronological sketch. Rather, an

over-all summary will be given, the details of which can be found in the books by

Doob [13,pp.527-559, 569-590] and Grenander and Rosenblatt [14.pp.65-82]. Only

the continuous case is considered and, naturally, T = (-<o, ).

If the stochastic process {Y(t)}" is stationary and continuous in the mean,

then it has the spectral representation"

Y(t) =f e12WTrXdZM 11
-m

where the process {Z(X)) has orthogonal increments and EIdZ(X)12 = dF(). FM)

is called the spectral distribution function of (t)) and

U

r,,(t) = E Y(t) Y(t + 7-) f *t2wk, dF(k) (1-2)
-0

Furthermore, F(R) is nondecreasing and since

U

f dF{x) = rr,(0) < 00 (1-3)

-0

{(r(t)} is assumed to be real valued.

"oFor a definition of all stochastic integrals herein see Reference 13, p. 426.
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FM) is also of bounded variation. Hence, FM) can be decomposed into the sum

of three nondecreasing functions

FR) = F1 (W) + F2 () + F3(G) (1-4)

where F1 (X) is the jump function part of F(X), F2(X) is the absolutely contin-

uous part of FR), and F 3(\) is the continuous singular part of F(). This

decomposition of F(R) corresponds to a decomposition of {Y(t)} into three

mutually orthogonal processes {Yt(t)1, {Y2 (t)), and {Y3(t)) with spectral dis-

tribution functions F,(\), F 2 (k) and F 3(k) respectively.

If {t)) is applied to the input of a linear sysr.em whose frequency

response function,* G(K), satisfies the condition

W

f JG(X)I? dF(X) < o (1-5)

then the system output, {Xt)}, will be a continuous in the mean, stationary

process whose spectral distribution function, FI(X), is given by

x
F1R) = f IG(K)1 2 dF(X) (1-6)

It should be noted that G(K) is not, in general, required to be in L 2 (i.e.,

it is not required that f IG(K)J2 dX < oD). From (1-6) it follows that F1 R)
- O

is absolutely continuous if F(X) is. If F(X) is absolutely continuous and if

IfG\)J2  F'(\), then (1-1) can be replaced by

Yit) f ei 2 , \ t f(k) dZ(K) (1-7)
-5

where Z(X)) has orthogonal increments and EIdZ(X)12 = dX. On the other hand

suppose Y(t)} is generated from a process {V(t)} according to the equation

(

Y(t) f W(7) dV(t - ) (1-8)
-0

S

where {V(t)) has orthogonal increments with EldV(t)12 - dt and ./ Iw(r)I'dr
< a . Then

FFFt, , t 2 ) f W(t, - 0) W(t 2 - 0) dO (1-9)
-0

" 0X) ia Doob's lain function C(R).



V5
From (1-9) it follows that {Y(t)) is stationary and continuous in the mean,

Furthermore

F(\) =f IXR12 dX < f IG(X1 2 dX = f IW(r)1 2 dT < w (1-10)
- m - -O

where G(W) is the Fourier Transform of W(r) and, hence, F(X) is absolutely

continuous and F'() = IG(W)12. Formally considering the increments of {V(t)}

to be given by

V(t2) - V(tt) = f U(t) dt (1-11)
ti

where {U(t)} is a white noise process, (1-8) representt the response of a

linear system with weighting function, W(T), to a white noise input process

and (1-9) and (1-10) represent well known results which are usually obtained

in a less rigorous way by engineers.*

As a consequence of the above results, a simple necessary and sufficient

condition for the existence of a solution to the shaping filter problem for

continuous in the mean, stationary processes can be stated, providing the

requirement of physical realizability is waived. They are: If FR) is the

spectral distribution function corresponding to the given covariance function,

r(T), then a process, {Y(t)}, whose covariance function F,(7) satisfies the

equality rr(r) = F() can be generated from a white noise process by means

of a linear system if and only if F(\) is absolutely continuous. Moreover,

any linear system whose frequency response function, G(X). satisfies the

equality JG(X)I 2 = F'(X) almost everywhere can be used to generate such a

process, (t)}. More generally, even if F0\) is not absolutely continuous,

the above still applies to the absolutely continuous part of F(); i.e., to

F2(X) in the decomposition given above. If the requirement of physical reali-

zability is not waived, then the above condition must be strengthened somewhat.

Many years ago, Paley and Wiener [15, p.16, Theorem X1I] showed that

if f JG(X)1 2 dX < a , where G(W) is the frequency response function of a
-C

linear system, then the system is physically realizable if and only if**

f IlogC(k21 X<w (1-12)

In view of the required equality IG(X)I2 = F'(\) i.e.. physical realizability

of the linear system (the shaping filter) requires the additional condition

The usual engineering procedure could perhaps be rigorized at the expense of introduciag
generalized linear functionals.

*The assumed continuity of nr) guarantees that J I(X)J2 d\ < .
-m
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f IlogF' I 1d< 11
- OD 1+ k2

i.e., for physical realizability of the shaping filter, FR) must be absolutely
continuous and satisfy (1-13). Since the above conditions depended only on the
magnitude of G(M), it is clear that these conditions do not uniquely determine
the shaping filter. A desirable* way of rendering the shaping filter essentially

unique (to determine the weighting function uniquely except on a set of Lebesque
measure zero) is to require it to be a minimum phase filter; i.e., to require
that G(W) A 0 for In X < 0. Such a G() is given by the (loss-phase) integral

G() = e1 f + 10 loP (&A (1( 1
I 217i - D (X-w)(1 + U?) (1-14)

Except for some brief comments relative to some special cases of stationary
processes which appear at appropriate places throughout the remainder of this
dissertation, this concludes the summary of previous work for stationary processes.
Clearly, for continuous in the mean, stationary processes and T = (- w, w) the

shaping filter problem had been resolved in rather definitive terms prior to

1950.0"

1.2.2 Summary of the Work of Darlington

In his paper [9], Darlington presents a generalization of Bode and Shannon's
results [8] so as to include nonstationary processes. In his generalization,
as in Bode and Shannon's original procedure, the central problem, of course, is
that of resolving the shaping filter problem. As will be clear from the summary
to follow, the shaping filter problem considered by Darlington is somewhat dif-

ferent from (but related to) that described in Section 1.1.

Afcer some preliminary remarks on the Bode-Shannon model and its use of
shaping filters, Darlington turns his attention to the shaping filter problem,
proceeding as follows. If W(t,r) denotes the weighting function of a linear
system then the covariance function P(t, t2 ) of the output of the system, when
the input is a white noise process, is given, when it exists, by the expression

I'l t2 ) z f W(t 1 , r) W(t ,i) dT 1-5
F( t IPt2 f Wt ( t2' 7--15)

-

Note that, since the lower limit of the integral is - ., it has tacitly been
assumed that the white norse input has been applied to the system continuously

The inverse filter corresponding to a physically realizable, minimum phase filter is physically
realizable and stable. This is important for applications to linear, least-squaree filtering
and prediction theory.

"The shaping filter problem is apparently still unresolved for stationary processes which are
not continuous in the seen.



throughout the infinite past. If the system is physically realizable, then

W(t, r) = 0 for r > t and the upper limit of the integral in (1-15) can be

replaced by min[t,, t2 ]. Letting Wa(t, r) denote the weighting function of the

adjoint system, Wa(t,7r) = W(,t), and F(t,, t2 ) can be expressed in the equiva-

lent form

F(t,, t2) = f W(t Ir)Wa(r, t 2 )d- (1-16)

Since (1-16) expresses F(t, t2 as the convolution of two weighting functions,
(tl, t2 ) can be interpreted as the weighting function of the nonphysically

realizable (self-adjoint) system composed of the original system in cascade with

its corresponding adjoint system.

Because Darlington was unable to find a suitable nonstationary analog of

the loss-phase integral (i.e., Equation 1-14) for solving the nonstationary

shaping filter problem, he restricts his attention to systems which are com-
pletely characterized by finite-order, linear differential equations and seeks

an analog, in terms of operations with differential equations, of the usual

procedure of factorization of the rational spectral density function in the

corresponding stationary case.

When the system is completely characterized by a finite-order linear

differential equation,* then its response V is related to its excitation E by

an expression of the form

B(p, t) V(t) = Ht) A(p, t) E(t) (1-17)

where B(p, t) and A(p, t) are polynomials in p with time-varying coefficients

d
where p = i.e.,

B(p, t) = Pn + bn.- (t)p n " I + + bo(t )

(1-28)

A(p, t) = p' + a. 1(t)p -1 + + ao(t)

and 11(t) is a time-varying scale factor. Any set of n linearly independent

solutions, say Uj(t), i = 1, . . ., n, of

B(p. t) V(t) = 0 (1-19)

Saw Chapters 2 atd 3 of this dissertation for details of soue of the following diacusaiIn.
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form a set of basis functions (bf's) for B(p, t) and for the system. Similarly,

any set of a linearly independent solutions of

A(p, t) E(t) = 0 (1-20)

form a set of basis functions for A(p, t) and are called the zero response func-

tions (zrf's) of the system. If the system is also time-invariant (stationary),

then the bf's and zrf's are exponentials,*eSt where the S 's are the familiar

poles and zero of the system transfer function. The bf's and zrf's of non-

stationary systems play analogous, equally important roles even when they cannot

be represented by simple coefficients like S

When two systems are cascaded where both are completely characterized by

a finite-order differential equation, then the over-all system is completely

characterized by a finite-order differential equation corresponding to the

product of the differential equations of the two given systems. In terms of

operators, the product may be represented by *

B1 V, = HI Al E, B 2V = H2 A 2 V, , BV = HAE (1-21)

where BV = HAE is the differential equation of the over-all system. As

Darlington indicates, the operators B, A, and H can be determined from Bj, B 2

A,0 A2, H,, and H2 by means of derivative and algebraic operations. This

corresponds formally to the convolution of the weighting functions of the two

given systems. Similarly, corresponding formally to the sum of weighting func-

tions is a suitably defined sum of their corresponding differential equations

represented by

B, V, H, A, E , 82 V 2 = 2 A2 E (1-22)

S V= VI +  D BV = HAE

T'he operators B and A and the scale factor H can also be determined from ,

B 2 Al, 42 II, and 112 by means of derivative and algebraic operations. Further,
the i,'s of B are those of B, plus those of B2, but the bf's of A (the zrf's of

the sun system) are not related to those of A, and A2 in any simple way.

Corresponding to the system characterized by (1-17) is its related ad-

joint system which is completely characterized by the adjoint differential

equation

11(p, t) V(t) = ± H((t) A*(p, t) E(t) (1-23)

Or linear combinations of them.

Suppressing the arguments for convenience of notation.



corresponding to (1-17), the operators B'(p, t) and A'(p, t) being easily

determined from B(p, t) and A(p, t). When the system is physically realizable,

the weighting function corresponding to (1-17) can be expressed in the form*

W( t, -) n Uj t)Ji (7) , t > r

1 | M 
(1-24)

0 t < '

and that corresponding to (1-23); i.e., that of the nonphysically realizable

adjoint system; in the form

Wat,T) = t>U(T

nS

,,.( t,.r) U, Jj(t) t < r
j I Ujlt7 (1-25)

0 t > r

The product of (1-17) and (1-23) corresponds to the convolution of W(t, 'r) and

W0(t, r) as in (1-16) and is written as

B i(p, t) V(t) = ± H2 (t) Ar(p, t) E(t) (1-26)

From the discussion following (1-16), it is clear that the weighting function

of the system characterized by (1-26) is F(t,, t2). which, from (1-16), (1-24).

and (1-25), can be written in the form
n

U(t) 
, > t

F( t 1, t2 ) = (1-27)

,tt2 Qi(t1 ,- < '2

The symmetry of F(t,, t2 ) expresses the fact that (1-26) is a self-adjoint

equation.

With this background, Darlington takes up the shaping filter problem as

encountered in the Bode-Shannon model, assuming that the signal, S(C), and

noise, N(t), are generated from uncorrelated white noise sources by means of

physically realizable systems characterized by finite-order, linear differential

equations. If the bf's and irf's of the systems are known, then the weighting

functions of the systems. W3 (t,r) and W1 (t,r). are easily determined and

"Assuming order n of 5 > order i of A.
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Fr(tt,t) and ,(tl, t2) found from (1-16). Also. differential equations of the

form in (1-26) can be found for both r.tc,t 2) and F1 (t1 ,t2 ) by forming the

product of the corresponding differential equations and their adjoints as de-

scribed above (even if the 6f's and zrf's of the generating systems are unknown).

If F S S + N, then F,(t,,t 2) = F3(tt1: 2) + rFtIt ( 2 ) and a differential equation

of the form in (1-26) whose corresponding weighting function is F,(t, 1 t 2 ) can be

found from rf(tl, t2) itself or by sunming the differential equations corresponding

to F8(t1 , t2 ) and F1 (t,, t 2) in case fr(t 1,t 2) is unknown., In this way, there is

determined

pt) V(t) H(t) A(pt) E)

B (p,t) V(t) : h(t) Ar(p,t) E(t)(1-2)

B'(p,t) V(t) t H2(t) Ar(pt) E t

The bf's of Br(pt) are those of Br(p,t) and Br(p,t) and are even in number, one-

half of them being the bf's of the systems used to generate S(t) and N(t) and the

other half being the bf's of the corresponding nonphysically realizable adjoint

systems. On the other hand. the bf's of A (pt). again even in number, are not

simply related to the bf's of AS(pot) and Ail(pt and must be found as the solu-

tions as

Ar(p,t) E(t) = 0 (1-29)

This corresponds to the calculation of the zeros of the rational signal-plus-

noise spectral density function in the stationary case in which the spectral

densities of S and N are added (corresponding to forming the sum of the dif-

ferential equations for F(tI, #t) and r1{t1,t2)) to get the spectral density of

F. The addition retains the poles but the zeros must be calculated as the zeros

of a polynomial (corresponding to finding the solutions of Equation 1-29).

Now the shaping filter problem, as considered by Darlington. is that of

finding a weighting function Wr(tfl such that the systems corresponding to

both it and its inverse are physically realizable and behave suitably as r -

for all t and such that
0

r ( I, 1 ) 2 f W (t ,'r) W,(7, t 2)dr" (1-30)

To do this he first finds the 6f's of B(pt) and Ar(pt) from the known bf's

of B3 (p.t) and B(pt) and by solving (1-29). The problem then is to assign

one-half of them to W tt,7) and the remaining half to WY(t,-r) so that the re-

quirements demanded of Wt(t,7) as stated above are met. if possible. Darlington

shows that this is possible and shows how to do it providing the coefficients of
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the differential equations characterizing the systems used to generate S and N

are regular at t = c, are periodic, or are of moderate variation. In these

cases the bf's either become exponentials as t - ± w, are exponentials multi-

plied by periodic coefficients, or are dominated by exponentials as t -±

and those bf's associated with exponentials esat where Resa < 0 are assigned

to Wp(t,r) just as in the stationary case, the Wp(t,,r) thereby obtained having

the required properties.

Before proceeding to a summary of Batkov's work, it should be noted that

in Darlington's work it was assumed that T = (- o,D) and that Fp(tl, t2) was

known to be the sum of two processes which were generated from uncorrelated

white noise sources by physically realizable systems. Further, no terms due

to initial conditions are present in F8 (t,,t 2 ) or F,(t,,t 2) because of the

assumption of stability of the S and N shaping filters and the choice of inter-

val T.

1.2.3 Summary of the work of Batkov*

In his paper [i0], Batkov, like Darlington but from a somewhat different

point of view, also studies the properties of weighting functions for physically

realizable linear systems characterized by finite-order, linear differential

equations and the properties of the covariance functions of the stochastic

processes at their outputs when their inputs are white noise processes with the

systems starting from rest; i.e., the initial conditions are zero. On the basis

of this study, he presents three methods for solving the shaping filter problem

for this class of nonstationary stochastic processes. The first of these methods

is, in essence, that of Darlington but is not quite as fully developed as

Darlington's. The second is an algebraic method using the discontinuities of

the partial derivatives of F(t1 ,t2 ) with respect to t, along the line t, = t2;

but, as mentioned earlier, it is much more restricted in application than claimed.

The third uses a method due to Levy [15] for solving a certain type of nonlinfar

Volterra integral equation of the second kind by resolving kernels, the resolv-.

ing kernals being solutions of linear Fredholm integral equations of the second

kind. These methods and the results leading up to them are briefly summarized

below.

Specifically, Batkov considers a physically realizable system characterized

by the differential equation-

L(p,t) X(t) = M(p,t) Y(t) (1-31)

Bathov's paper contains several functions and operators with arguments incorrect.

Many of the results stated above are derived in detail in Chapters 2 and 3 of this
dissertation.
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where
n

L(p,t) = a(t) A d P a < n

to dt (1-32)

M(p' t) = b (t) d'

and the ai(t) and bi(t) have n-derivatives in the region of interest. The

weighting function G(t,r) of a system characterized by (1-31) with N(p,t) 1 1

is the solution of

L(p,t) G(t,r) = 8(t - r) (1-33)

with zero initial conditions. The weighting function, G0 (t,r) of the corres-

ponding adjoint system is the solution of

LO(pt) Ga(t,,r) = - S(t - ')" (1-34)

with zero initial conditions and GI(t,,r) = G(1rt). When M(pt) is not a con-

stant, the weighting function W(t,r) of the system is the solution of

L(p,t) W(t,r) = U(p,t) S(t - -r) (1-35)

with zero initial conditions and can be obtained from G(t,,r) by the expression

V t,r') = MJ'(p,7-) G(t,r) (1-36)

The weighting function Wf(t,r) of the corresponding adjoint system is the solu-

tion of

L/ (p,t) Wa(t,-r) = - MU (p,t) S(t - r) (1-37)

with zero initial conditions and Wa(t,,r) = W(r,t). As a function of -r,
W(t,r) satisfies the equation,

Rtp,r) W~t,ir) = Q~p,r) 8(t - r) (1-38)

where nd

R(p,r) =Z rlr) (T
iso dr' (1-39)

Q(r)r) A 
T do q d drl .

'The superscript a denotes the adjoint differential operOtor.
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the coefficients rj(T) and 'qj(r) being determined from the coefficients aj(T-)
and b (T) algebraically. Now W(t,T) also is the solution of

L(p,t) W(t,r) = 0 (1-40)

with the initial conditions

aW(t,ir)/at l = 0 i =0, .. n-a-2 (1-41)

= ( 1 )h (k~b -j)

n- j 2 Dr W t, ) (_- 1 ) j + a 3 ( -)
E~-- i " 0J a3+J+r'+!

S= 0, ..., a.

Again. W(t,r) is also the solution of

R(p.T) W(t,r) = 0 (1-42)

with the initial (final!) conditions

JiW(t,-)/arij 1 = " BT IT t X

._ (- ,t  )+J bCP"-h)(t),, = n--I, ... , n-i (1-43)

t>0

where

Suk-i
a+kG(t,T)/Br n +4 I /an(t)E -aG(t )IItX

IrT t = - t

n
-t-

,>0

Moreover, W(t,T) can be expressed in the form



;t<t

0 ; t < 'r

where the qj(t) and Pj(,-) are sets of basis functions for L(pt) and R(pr)

respectively.

Assuming (Y(t)) is a white noise process applied to the system at time to

and that the system is at rest at too the covariance function r(t1,t2 ) of the
output process {X(t)} can be expressed in the form

t 2

f W(t1 .r) W(t2,.r) dr ; ti > t2

to
I"(tjt 2t ) ti (1-46)

f W(t .r) W(t 2'r) d- ; tI < tz
to

Applying the operator L(pt,) to (1-46) yields

L(pt 1 ) P(t,,t 2 ) = 0 ; ti  t2  (1-47)

L(pt,) F(tlt, ) = U(pt 1 ) W(t2 #t,) ; ti < t2  (1-48)

Further. r(t 1 ,t,) has 2n-2a-2 continuous partial derivatives with respect to t,

and t. and for k > 2n-2m-I

rhrt(t,,t2 ) t r(gt,2) =Pk(t2, t2 ) = tB tl 1& t2 - ztt Ito t2

i-- - B4--w- t2 t I ta - a -i Ir j

(1-49)

Also. from (1-47) and (1-49). or from (1-45). it follows that

E q(9lt) P(t 2 ) ; t > t2

r(t t# 2 ) -(1-SO)

9j t )pj(tl) ; t i  < t 2

where the q1(t) are a set of basis functions for L(p,t) and the pj(9,) are a

set of particular solutions of (1-48).



The first method suggested by Batkov for solving the shaping filter pro-

blem is based on (1-48). Given the qi(t,), the ai(t,) and G(tr) are easily

computed algebraically (see Chapter 2). Knowing L(pt 1 ) and G(t2,t1 ) and using

(1-36), (1-48) becomes

L(p,t i) r(t 1 t 2 )  = M(p,t I ) Ma(p,t,) G(t2, tI); tI < t2  (1-51)

The remaining step is to find the product operator M(p,t,) MO(pt,) from (1-51)

and then decompose it into its adjoint factors. As Batkov points out, this

decomposition is difficult if M(p,t) contains derivative operators, but is simple

if it is just a time-varying scale factor. Note the similarity of factoring the

product A~pt,) Ma1(pt ) here and the factoring of A (p,t) in Darlington's work.
These are, in essence, the same problem.

The second method described by Batkov, i.e., the algebraic method, is

based on (1-49) rewritten in the form

V -( t ) b,(t) {J+n'e(t't)'W(,,- = -  (J "-'(,) ) X t,+/
dr,_6S( /n-- ) f W(,.-)

Z~t dti't + ( 7'

dl=i b.(t) 1
d r t ; j = n-a-i, . ., n-1 (1-52)

From (1-52), relationships between the partial derivatives of W(t,,r) with respect

to t and r for t = T can be found recursively and expressing them in terms of the

known ai(t) and unknown b6,(t) lead successively to 5-equations in the b(t) and

their derivatives. Batkov claims that b=.-(t) enters the equation obtained from

(.1-52) for j = n-u+k-1 algebraically in terms of b=(t), . .. , b,-k+,(t) and their

derivatives. Now, in particular,

ba(t) = ± an(t) (-l) n- -.i rn 2 .. 1I(t,t) (1-53)

However, as will be seen later. b,._1(t) does not appear in (1-52) for j-n-a and

both b6,_(t) and bj!,(t) and also b. 2(t) appear in (1-52) for j=n-a+l, etc.,

for j=n-n+l, . . ., n-l. Hence, the claimed recursive algebraic method for

finding the b..k(t) from (1-52), and thereby solving the shaping filter problem

algebraically, fails (except. of course, where bJ(t) 0 for j 1 0).

The third method, described by Batkov in an appendix to his paper, will

not be summarized at this point because of the difficulty of solving the Fredholm

integral equation for the resolvent kernel and because of his restrictive assump-

tions as noted in the following remarks.
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Before proceeding, it should be noted that Batkov assumed that the

system started from rest at to where T = (to1 ) and, what is even more

important, he also assumed that r(t1,t2) is the covariance function of a
process generated from a white noise process by a physically realizable

linear system characterized by a finite-order linear differential equation

of the form (1-31) for t > to.

1.2.4 Summary of the Work of Leonov

As noted in the chronological sketch, Leonov [12] has obtained a rather

nice mathematical solution to the shaping filter problem, and also to the cor-
responding inverse shaping filter problem, in terms of expansions in orthogonal

functions. This work is summarized here and the details can, of course, be

found in Leonov's paper.

Leonov formulates the shaping filter problem as follows. Given a white

noise process {Y(t)}" where - < t < w [i.e., TY = I- w,w)] and a nonstationary

process {X(t)} where 0 < t < T [i.e., TZ = (0,T)], it is required to show that'

the random function [a sample function of {Xt)}] X(t) can, under certain con-

ditions, be represented in the form

X(t) = A1 Y(t) (1-54)

where the (linear) operator AZ is defined if the function X(t) is given.* The

corresponding inverse problem is that of representing Y(t) in the form

Y(t) = A-' X(t) (1-55)

where A-' is the operator inverse to A1 . Leonov shows that this can be done

by explicitly constructing a suitable Az and a suitable A-# as follows.

As is well known [16] a random function Z(t), TI = (a,b), can be repre-

sented as a series (canonical expansion)

Z(t) B, zO(t)" (1-56)i

It is always assumed that I (t) 0 0 for all white noise processes considered herein.

*Pugschev (16,17] calls (1-54) the integral canonical representation of 1(t).

""The zi() are not necessarily orthogonal and - < a < b < .



where the B, are random variables which satisfy the conditions

E Bt Bi = SBJ Dj (1-57)

and the zi(t) are some regular (nonrandom) functions. In order that the series

in (1-56) converge in the mean to Z(t), it is necessary and sufficient that the

series

F1 U t) 2 -Z Di zj(t,) zj(t 2 ) (1-58)

converge to F1 C(tt 2) in the usual sense. The definition of convergence in the

mean is, of course, only meaningful for random functions with finite variances.

Now to solve the problem, it is necessary to represent Y(t) by a series of

the form in (1-56). However, since Y(t) does not have a finite variance, con-

vergence in the mean cannot be used and a new concept of convergence must be intro-

duced. Leonov introduces the concept of weak convergence in the mean.* A sequence

of random functions Vn(t) is said to converge weakly in the mean to the random

function U(t) if the integral

f
an(T) = f 1(t) Un(t) dt (1-59)

0

has a limit in the mean square sense as n - w for any sufficiently smooth random

function R(t); i.e., for any R(t) which has finite variance, is continuous in

the mean, has the necessary number of continuous stochastic derivatives, and whose

covariance function FR(t1,t 2 ) satisfies the inequality f- F 2 (t,t) dt < . With

this definition of convergence, Leonov shows that Y(t) can be represented in the

form

Y(t) z C t yj(t) (1-60)

im!

where E CiC3 = Sij and the yi(t) are any complete (in L 2) set of orthonormal

functions over (- cu. ) and where the series in (1-60) converges weakly in the

mean to the white noise random function Y(t).

To solve the basic problem is now fairly easy. The Cj in (1-60) are de-

fined as follows

Ci V- (1-61)

This is clearly analogous to the ordinary concept of week convergence in Hilbert space [is).



where the random variables are the coefficients in the series expansion of X(t)

Xlt) = Vj Xj(t) (1-62)

and D,= E V2 . The linear operator A1 is then defined as

Az Y(t) = f W,(t,r) r(r) dr (1-63)
- S

where

W1(t, r) = E / Xi(t) y,(r) (1-64)

Then from (1-63) and (1-64)
U

A1 Y(t) = f Wz(tr) Y(-r) dr = f Vj Xj(t) = X(t) (1-65)
- m 4=I

where the integral in (1-63) is taken in the mean.

The functions W1Ct,r) and Y(r) in (1-65) can be defined in infinitely
many ways by using any other representation of X(t) in the form (1-62) as is
shown to be possible in [16]. However, Leonov shows that if Y(t) is so chosen
that (1-65) holds, then there is one and only one WZ(t,r); i e., W,(t,T) is unique.

Finally, the inverse problem is easily solved as follows. Let A-' be

defined as

S

A;' X(t) f tr) X(r) dr (1-66)
-u

where

) yW(,) 1aj()/,/D (167)

and the ao(T) are chosen so that

f aj(r) Xj(r) dr = j 1-68)
0

As before, the y4 (t) are any complete (in L2) set of orthonormal functions over

(-w,w). Then from (1-60), (1-66), (1-67), and (1-68) it follows that

F

Y(t) = f W ( t,r) X(r) d- = ylt) (1-69)
0 t
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The series in (1-69) converges weakly in the mean to the white noise random

function Y(t) as noted above.

This completes the summary of Leonov's solution to the shaping filter

problem and the corresponding inverse shaping filter problem, tile remainder

of his paper being devoted to mathematical niceties and applications.* It

is clear that the weighting function for the shaping filter can be written

down immediately in series form once the Xi(t) and D, for the canonical ex-

pansion of X(t) are known. In his book [16] Pugachev presents several tech-

niques for finding the first n-terms of expansions of the form (1-62) rather

simply and which avoid having to determine the eigenvalues and eigenfunctions

of an integral equation as required in the well known (arhunen-Loeve Expansion

Theorem. However, it should be noted that Leonov's solution is always obtained

in the form of an infinite series and, further, there is no guarantee of

physical realizability of the shaping filter or its inverse.

Applications will be discussed in later sections.



CHAPTER 2

PROPERTIES OF WEIGHTING FUNCTIONS

FOR A CLASS OF LINEAR SYSTEMS

2,1 INTRODUCTION

Because of their importance in the shaping filter as evidenced by

Chapter 1 and those to follow, for purposes of detailed review and for later

use ts available reference material, this chapter is devoted to the investi-

gation of the properties of weighting functions (Green's functions) for sys-

tems which can be described by finite-order ordinary linear differential

equations of the form

n n-1
Zai(t) X(k)(t) E bi(t) y(J)(t) ;t > 0 (2-1)

too ISO

where, for t > 0, an(t) 0 and the at(t) and b (t) are continuous. Since

weighting functions and their derivatives are, in general, discontinuous at

t r., this investigation divides naturally into two parts: properties in

the regions where t 9 r, and properties of the discontinuities at t = T.

2.2 PROPERTIES IN THE REGIONS HERE t j

It is well known that the general solutiocn of (2-1) can be written in

the form (19, p.257]

g n-1

x(t) = f dr G(t,) Z bj(7) y(j)(T) +

0 j=O

n-1

+ Z X"(0)O q(t) (2-2)
too

where the q4 (t) are n-independent solutions of (2-3)

aX} = 0 (2-3)
to0

for which

q (J)(t) it = j; .) = 0, . . .. n - 1 (2-4)

and G(t,r) is the weighting function (Green's function) for (2-3). If G(t,,})
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and the b (r) have a sufficient number of derivatives with respect to r, then

through integration by parts, (20. p.189] (2-2) can be brought into the form

t n-I
X(t) = f dr W(t,r) y(r) + , Xil)(O)q 1 (t) (2-5)

0 t=O

where

W((t)r) Z 1-/ Jb(-r) G(t,7-) (2-6)
j-o ri

Here, N(t,7r) is the weighting function for (2-1). Its properties are investigated

below.

Since W(t,r) is defined in terms of G(t,r) as shown in (2-6), any investi-

gation of the properties of W(t,r) must begin with an investigation of the pro-
perties of G(t,r). By definition [19, p.254], the weighting function for (2-3)
is that solution G(t,r) of (2-3) which satisfies the condition

G(t,r) = 0 ; t < r

im 4G(t, - = 0, . . , - (2-7)
t I Tr -at

lim Bn-'1G(tr) 1t 1 7- zt1-1 anC

Since G(t.r) is a solution of (2-3) for t > r, in this region it can, according

to the theory of linear differential equations, be expressed as a linear combina-

tion of the qj(t)." Hence

n-1

G(t.r) = Z a, q4(t) ; t > r (2-8)

where the a. are chosen so as to satisfy conditions (2-7). Putting (2-8) into

(2-7) and writing the result in vector-matrix form there results

q0 (r) . . . qnt('r) aO  0

... . (2-9)

Oay -I)(r.. q0d1!7-n' ) , Lm I/ao(f 2-

Or ny other set of nlinearly independent solutions of (2-3) .
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Now the determinant of the matrix in (2-9) is the Wronakian of the qj(t) and

hence does not vanish because the qj(t) are a set of linearly independent

solutions of (2-3). Therefore, the inverse of the matrix in (2-9) exists and.

hence, the at are given by

a. qo(,r )  •••qn,- (r ) -/0

(2-10)

It is seen from (2-10) that the a, depend on 'r only, which, together with (2-8),

implies that G(t,r) is separable; i.e., that

G(t,T) = (2-11)
0 t t<T

Under the assumptions made up to now regarding the ai(t), it follows from the

existence theorem for solutions of a differential equation that the qj(t) have

at least n-continuous derivatives for t > 0, and, thus, from (2-10) it follows

the aj(T) are at least continuous for r > 0. More generally, if the ai()(t)

are continuous t > 0, then the a.(T) have at least n-continuous derivatives

for 'r > 0. To show this, it is convenient to introduce the adjoint differential

equation corresponding to (2-3); namely,

(-1)' [ai(t) X(t)] ( ' = 0 (2-12)

Since the at(i)(t) are assumed to be continuous, (2-12) can be rewritten in the

form

Ca(t) X(O)(t) = 0 (2-13)
too

where the Cj(t) are continuous for t > 0. Now, if f(t'l) is used to denote the

weighting function for (2-13). then (19, p.256]

II(t,'r) = G(T,t) (2-14)

Furthermore, H(tT) must satisfy (2-13) for all t > r. Hence, using (2-11).

it is found that
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n(2-15

Eq j()ECt) i)JC) = 0 t > r (2-15)iWO jno i

Since the qj(T) are linearly independent, (2-15) implies that
n

C (t) a i)(t) = 0 (2-16)
J. 

o0

Thus, the ai(t) are solutions of (2-13) and, hence, have n-continuous deriva-

tives by the existence theorem.

From (2-16). it is easily shown that
n-1

ct~) t 0C i(t) aW/It)

i (- . °  (2-17)

From (2-17), it is easily concluded that, if the Cij")(t) are continuous [i.e.,

the a,("k)Ct) are continuous), then the a.(nh1)(t) are continuous. Similarly,

from (2-3) it can be concluded that the qare continuous if the ()

are continuous. This concludes the study of G(t,r).

Substituting (2-11) into (2-6) it is easily seen that W(t,r) can be

written in the form

n n-1
E t) E (-l)j [b (Tl~ar lr) I t > r

W(t,T) = no J-o (2-18)

0 ; t < '

The existence of the derivatives in (2-18) will be guaranteed by assuming

continuity of the aj" t) and b.)(t) for t > 0. Carrying out the indicated

differentiation and m-king the obvious definitions for the Pj(7), it is found

that W(t,r) can be written in the form

n-1

W(t,}r) = so (2-19)

0 ; t < r

hence, W(t,T) is separable; i.e., can be written as the sum of products of a

function of t only by a function of r only. Further, the functions of t are

a set of linearly independent solutions of (2-3). It is clear that continuity

of the derivatives of the qi(t) and /i(T) implies the continuity of the partial

derivatives of W(t,r) at any t, except t = 7. Examining the differentiability

properties of the p4 (r) it is found that the t(h)(T) are continuous for 'r > 0



if the at(" )(t) and b (J+)(t) are continuous for t > 0. Incidentally. it

is also clear that W(t,r) formally satisfies (2-3) except at t = r.

2.3 PROPERTIES OF THE DISCONTINUITIES OF W(tWr) AND ITS
PARTIAL DERIVATIVES AT t = r

In order to investigate the discontinuities of W(t,r) and its partial

derivatives at t = r, it will be convenient to replace (2-1) by a particular

set of n first-order equations. If the ai(t) and b6(t) have a sufficient

number of continuous derivatives for t > 0, then (2-1) is equivalent to the

following system of first-order equations (see [20, p.191]).

X(t) = X 1(t) + F0(t) y(t)

X1l)(t) = X2 (t) + Fl(t) y(t)

(2-20)

.X (t) + -.-t(t) y(t)

X(l)(t) = - an.;(t) Xn(t) ....- ao W X Wt + F W (t) t)

where the Fi(t) can be found recursively from the equation

FLU) - b._,(t) - h' an-+.+-(t) Fh(S)(t) (2-21)i ,-,=,,-oi\ n-- h""'Sao'n-i

In (2-21) use has been made of the fact that Fo(t) = bn(t) - 0 and, hence, all

terms involving Fo(t) have been omitted. If Wj(t,Tr) is used to denote the

weighting function coiresponding to Xj(t) in (2-20). then letting y(t) = 80-T).

(2-20) yields

W(t,') W ,

WI(1. )(t,,r)= W2 (t,-) + Fl( ) 8(t - -r)

* • •(2-22)

,(_'°)it,-r).- = WN(tr) + F,_l(t) 8 (t - T)

W(t °)(t.T) =- o._ 1(t) W(t.,r + F.(t) t(g -7)

Integrating (2-22) with respect to t from 0 to t and remembering that W (t)=0



for t < ', there results (for 7 > 0)

t t

f do- W(o,'r)= f do- W1(o-)

t
W I(t, r) = f do' W2(a,1-) + F1 (r) U(t - r)

(2-23)

t

W,.,{ t r)= f do- Wn(a,'") + Fn- 1 ('r) U(t - r)
7. (2-24)

t 
n~

W(t,r) f doI- La,.(O-) Wi(o,'r)]+ Fnl(r)U(t-r)

where U(t - T) is the ordinary unit step function. Making use of (2-22) and

(2-23), the discontinuities of W(t,T') and its partial derivatives can be evaluated

fairly easily. In fact from (2-22) it is easily established that

W( ,0)it, ") = Wi+1(t,'r) t > -r, i = 0,. ., n - 1

n (2-24)

W(n)(t,,r) = - a. 1 (t) W(t,T) t >-7)
jtt

If W(')(r,') is defined as shown in (2-25)

W( ,) ('., ) = is zi+J W(tr) (2-25)

then from (2-23) and (2-24) it is clear that

W( °)(',') = Fi+i(i);0, . . , n 1

n (2-26)
W( n,o0) (7..-r} Z aj.l(,r) Fj('r)

jot

Also from (2-24) it is clear that

W(o j)(t.,) ; i > -r ; , 1, . n - 1 (2-27)

n

W( n, J (t,,r) = - u _ t) W(°'i)(t. ) t > 7
ji

By virtue of (2-27). the evaluation of the discontinuities of the W iJ(Ot,T)

at t - 7- reduces to the evaluation of the discontinuities of the W#o0J)(t,'r) t

t = ". To find these, use is made of (2-23). Upon performing the indicated

differentiation, it is found that



ft do (J' r
7-7

wIO'j)(t'r) f do' W, 
(2-0T

+ FO r ) ; t > T, < n

t 

n

W(o0i j) f, o, E aj-,F~ W0' )( .) ji

+ iF ( 
(2-28)

Equaion (229) an e u E ofn h aaue ofh)T, WOJ)(,i adhncth0

kno 1 0 2 -1 7)

o+ re r )i( )  ; t > tr

Taking the limit as t c, there resultsJ-1

ven W( .) eprese i tW7heform) (J-1. ) + F J)(r) ; i  < n
J-I

w(o j)(t ) dif r[e n ai l(er )q w o ()(t,-) J-

F()n(1) a2-29)

Equations (2-29) can be valid. values of wOJ)(.), and, hence. those
of Wli'J)l .T7), recursively in terms of the Fj(Tr) and aj(T) and their derivatives.

2.4 A SVNTIIESIS PROBLEM

This chapter concludes with the solution of the following synthesis problem;

Given Wlt.- ) expressed in the form in (2-19), find the ai(t) and bj W) of its

corresponding differential equation (2-1).

Since the qi(t) in (2-19) are solutions of (2-3), it is clear that the

fol Iowiiig equations are valid. n
ailt) q(')(t) 0

* .(2-30)

n

a (t) q(i(t) = 0
i-O 

-

Ilegarding the qj(t) as known and the ai(t) as unknown, (2-30) is a set of n-

linear equations in the n + I unknowns, aj(t). Since it can be assumed without

loss of generality in (2-1) that a,(t) a 1. (2-30) can be solved for the remain-

ing unknown aj(f) with the result



U
ao(t) q0 (t) . •4 n") M -q (nt)

* = x (2-31)

an.,(t) q._,(t) •. • • . .(t - - t)

The existence of the inverse matrix in (2-31) is guaranteed by the fact that the

qi(t) are linearly independent solutions of (2-3). Equation (2-31) provides the

desired relationship for determining the ai(t) from W(t,,r). This result is given

as Theorem 6.2 in [21] for an arbitrary set of n-line rly independent functions

qi(t) providing the qi(t) have n-continuous derivatives on the region of interest.*

Once the ai(t) have been determined, the bi(t) can be found from (2-21) rewritten

in the form

b .il'=9 In+8-i
b. (t) +- an'i+k+S (t )  F,(3)(t) ( -2(2-32)

where the Fr(t) are given directly in terms of the discontinuities of the weight-

ing function and its derivatives with respect to t as in (2-26).

A development similar to that given in Sections 2.2, 2.3, and 2.4 has also

been carried out by Borskii [22).

*Linear independence of the qi(t) is equivalent to the nonvanishing of their Wronakian.



CHAPTER 3

PROPERTIES OF THE COVARIANCE FUNCTIONS OF

A CLASS OF STOCHASTIC PROCESSES

3.1 INTRODUCTION

As is to be expected and as evidenced by Chapter 1, the covariance func-

tions of the class of stochastic processes, which can be generated by passing

white noise processes through systems characterizable by finite-order ordinary

linear differential equations of the type given in (2-1) with random initial

conditions, have many properties in common in addition to that of being non-

negative-definite [23,p.466]. This chapter is devoted to the development of

some of the more interesting and useful among these additional properties both

for the purpose of detailed review and later use.

3.2 SOME GENERAL PROPERTIES

Let it be assumed that a given system can be characterized by a differen-

tial equation of the form given in (2-1) where a,(t) a 1 and the ai1 ')(t) and

6b(J)(t) are continuous for t > 0. Then the weighting function, W(t,r), for the

systems exists in the form (2-19). Now. letting {y(t)) be a stochastic process

with covariance function [ yy (t,,t 2) and X(')(0), random variables with covariances

rFj, the covariance function, F I(tlt2), of the stochastic process (X(t)) can
be determined from r yy( t,,t 2) and lij according to the relation [20,p.227].0

ti  t2

Z(tj~ t2 ) f d7- f dr 2WU,,'r ) Wt2 r )F (r , 7)

0 0

IFyij qjCt,) qj(t 2 ) ; tj > 0, t2 > 0 (3-1)

Umo j=o

When y(t) is a white noise process, Fyy(tjt 2 ) ({t! - t2 ) and (3-1) becones

f d7 N()t I0r)( t 2UJ q+Ut) q1 t2 ) ;

r Z(tjt 2 f) ti > t2 >0
gti - If dT w(,,*.,) ~27)+Y , q,('t) q (t.);

0 to j00

tZ > tj > 0 (3-2)

Here it has been assumed that 1[iZ")(oJ)(t)] 0 0 in U and t > 0.
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If the expression for W(t,'r) given in (2-19) is substituted into (3-2) and the

coefficients of the qi(t) are collected, (3-2) can be brought into the form

n - I n t 2

qi(t I ) [ dr~i (T)13j(T) + rijtwo0 0

tI > t 2 > 0
r Zt=t)n1t (3-3)

j--O =q/t 2 ) qi(t 1 ) f dr,8 ('r),j(r) + (3j ;

t2 > tI 0

It will be convenient to denote the terms in the square brackets in (3-3) by

the symbols pi(t), in which case (3-3) becomes
n-i

z qi(ti) pi(t 2 ) ; ti > t2  > 0

F11 (t ,, t2) = (3-4)t-
q (t2 ) pj(t,) ; t 2 > t, > 0

j~o

From (3-4) two important general properties of the class of covariance functions

under consideration are obvious. First, they are separable in the sense used in

the preceding section. Second, for t1>t2, the functions of t,, i.e., the q1 (t1 ),

are solutions of the homogeneous differential equation (2-3). In addition, if the

a('k')(t) and b(J+k-')t) are continuous for t > 0, then F' (t ,t ) has con-

tinuous partial derivatives of order k in regions t,, t2 > 0; tl # t2. This is

easily established from the differentiability properties of the qj(t) and /J(Cr)
discussed in Section 2.2.

3.3 DISCONTINUITY PROPERTIES

The discontinuities of the partial derivatives of 1"UZ(tt 2 ) at ti = t2
can be evaluated in terms of the discontinuities of the partial derivativel of

W(t,T) at t n r by making use of (3-2). In fact, upon differentiating (3-2)

partially with respect to t, (assuming, of course, that the requisite derivatives

exist) there results



I- 3!

0f d'rW"''0 (tl#r) WNt 2#11 +

+ z r,, q~j)(t, qj(t 2 ) ;t 1 > tz

rzz o t, f~ = d WIIDO)(t ,ol) NO V2 , ) + W(tit) W(tto1 ) +

0

n-l n-i

tw J60r,, qj
1) itl) qj(t 2 ) ; t2 > )

Defining the discontinuities J4 j(t 2 ) as 
shown in (3-6)

J~~(2 ) im l=('~tt im F (tui)(t 1 1 : (3-6)

it follows from (3-5) that

J 1 0 U(t2 ) W2(tf t 2)37

In general
t 2

f drWV(i, 0 ) ( t V r) W (i10 ) t 20'r +

~t0 at 2.

kno tw

zz V 2 f t d 7W- 0 o(t i , r) ,i , ) ( t 2 0 r) +

+ OtE -jh [w(t-hI-o)(t lot N (i'0 )(t2 t, +

+ 5sr,,, q94)(t 1) q41i1Ut2) ; t 2 > tl

and hence 
ht w

IN 0hle) (t t I W~' ) ( t 2 1 st , 1 2 (3-9)



It should be noted that no initial condition terms appear in (3-7) or (3-9);

i.e., the discontinuities of the rZ'1 'J)(t 1,t2 ) depend only on the W(h'J)(t,r).

If the (hJ)(t,r) appearing in (3-9) are expressed in terms of the alk)(t)

and the F ( )(t) as developed in Section 2.3, then (3-9) becomes a second degree

equation in the F (t) and their derivatives. This form for the Ji i(t 2) will be

examined in more detail in a later section.

3.4 A FINAL IDENTITY

Equations (3-10) can be considered as a set of simultaneous nonlinear

integral equations in the 6(r) if the pi(t), qj(t), and F'j are assumed

n-I t n-I
pi(t) = q(t) f d-rB(rI6(-r) + K r,j q,(t) ;

J-0 0 o

i = 0, . . . , n - 1 (3-10)

known. These integral equations can be converted into a set of simultaneous

second degree differential equations in the /(t) which are independent of the
n-I

Pip. To see this, the operator 1o ak(t) dk/dtk is applied to both sides of

(3-10). [assuming, of course, the requisite differential properties for the

pi(t) and qj(t)] with the result

n n-1 n dht

Za(t) P!A)(t) = E Z a,(t) [q.(t)
o juo hoo dt At 0 d-r/j(r)/Jj 1( ) + rij

i = 0, . . . , n - 1 (3-11)

Making use of the fact that the qj(t) satisfy (2-3) it is clear that the terms

in (3-11) involving the "jj vanish identically in t for all i,j. Expansion of

the remaining terms in (3-11) according to the rule for differentiation of pro-

ducts gives
n n-1 n

Sa(t) P!,(AI) ak(t) qyfi() x
kao j =O k o ta0t

Xtfdr P,(-r) Jj(,r)]'* .
0

t = 0, .n. . , - 1 (3-12)

Now (3-12) can be rewritten in the form
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n-I I

x [A,,,)Aj,,)] + a °(t) q(h)(t) X
J-o kwO

t

x [ f dTj(r)/3j(-r)] ; i = 0, • • . , n - 1 (3-13)

0

Again using the fact that the qj(t) are solutions of (2-3), it in clear that

the second term on the right-hand side of (3-13) vanishes identically in t

for every value of i and j. Further expansion of the terms (1 {t)/3~t)l -

in (3-13) yields

kO j=O kno t' oo

X ah, t); t) ' ( )3 '' " ( );

i = 0, . . . , n -,€ ; t 0 (3-14)

The above identities form the desired set of second degree differential equa-

tions in the j3j(t). They are obviously equivalent to (3-10) providing a proper

set of initial conditions for the 8i(t) and their derivatives is given.

3.5 A DISCUSSION OF BATKOV'S ERROR

As noted in Chapter 1. the second method described by Bstkov in his

paper only works as an algebraic method for a much more restricted class of co-

variance functions than claimed by Batkov. Using the results of Sections 2.3

and 3.3. this is easily demonstrated as follows.

Letting n > 3 and examining J0 ,(t 2 ). it is found from (3-9) that

J 0, 1(t2 ) = r2 (t2,t2 ) (3-15)

which, by (2-26) and (2-21) yields

J0 ,(t,) = F'l(t,) = b2..,(t2 ) (3-16)

Similarly, from (3-9)



J0,2( t ) = W(Nt2 t) W1. 0) (t20t 2 ) + W(O I )(t2, t2) W(tzt 2 )

+ W(t 2't2 ) W(t, t)(I) (3-17)

which by (2-26), (2-29), and (2-21) becomes

Jo,2 (t2 ) = F,(t ) F 2(t2) + -F2(t 2) + Ft )(t2) F(t 2 ) +

+ FI(t 2) F(')(t 2) = 2FI(t2 ) F(')(t2 )

= 2b .,(t2 ) ( )  (3-18)

Note that Jo, 2 (t2 ) does not depend on bn. 2(t2 ) which is contrary to what Batkov

claims [Batkov's rb(t, t2 ) is equal to J0,(t 2 )). Further, from (3-9)

Jo, 3(t2) = W(t2, t2) W(2'0 )(t 2 t2 ) + w(O' )(t2 2) W ''0 )(t21 t 2 )

+ W(t 2, t2 ) w '
0) (t2, t2' )( + W('2)(t 2 t 2)  W(t 2, t2)

+ 2W(°''}(t2,' 2) W(t2 ,t2)
(1) + W(t2, t2) W(t 2,t2 )(

2 ) (3-19)

which by (2-26) and (2-29)

Jo, 3 (t2 ) = F1 (t2 ) F 3(t2 ) + -F 2(t Z ) + F(t(t 2) F 2 0 2 )

+ F,(t 2) F '-(t 2 ) F -2F ')(t 2 ) + F(2)(t

2 2

+ F 3 (t 2) F 2) 2(t 2 ) + 2 -F )  +2 ) F ')(t2)

+ F,(t2 ) F1 
2(t2 )

2F,(t 2 ) F3(t 2 ) - F2( 2 ) - F(')(9 2 ) F 2(t )

F ')(t 2 ) F,(t )  + F 1)(t )2 + F, t ) F(2)(t ) (3-20)

Making use of (2-21), it is a function of bn.3(t2), bn.2 (t2 ) and its first

derivative, and b,.,(t2) and its first and second derivatives. Proceeding,

it can be shown that a similar situation obtains for the higher order jumps,

J ,jJ02). This clearly demonstrates Batkov's error and shows that from the

jumps one can obtain at best a set of simultaneous, nonhomogeneous, nonlinear

differential equations in the Fi(tq) or bd(t.)" An independent set can be

obtained from the jumps Ji,i,(t2 ) where i = 0, . . . . n - I for example.

However, because of their complexity and, hence, lack of utility, they are



neither derived nor considered herein. Of course, when bi(t 2 ) m 0 for 0 < i
< n - 1, then Ji,j(t 2 ) = 0 for i,j < n - 1 and Jn-1, n(t2) Wn'-'°}(t 2, t2 )

b2(t 2) and Batkov's algebraic method works. However, the first method
described by Batkov also works for this special case. Note that it has been
assumed in the above that r(t,,t2) is the covariance function of a process
obtained from a white noise process by the physically realizable characterized
by an nth order differential equation of the form given in (2-1).



CHAPTER 4

EXACT SOLUTION OF TiE SHAPING FILTER PROBLEM FOR SOME SPECIAL CASES

4.1 INTRODUCTION

When the function r(t,,t2 ) introduced in Section 1.1 has certain special

properties, the shaping filter problem can be resolved by fairly elementary

methods. These special cases are studied in this chapter and the methods of

solution are presented. It is assumed that T = (0, T) and that r(tlt 2 ) is

separable and is given in its separable form.

4. 2 TIlE "SIMPLEST" CASE

Probably the simplest case is where r(tt1 ,t,) is of the form

n n

F(t1t 2 ) = E zFrij qt(t,) qj(t 2 ) (4-1)
ta! Jul

where it can be assumed without loss of generality that the qj(t) are linearly

independent on T. In this case a set of necessary and sufficient conditions

that F(t1,t2 ) be a covariance function is that the matrix [Wtj] be symmetric

and nonnegative-definite. To prove the sufficiency of the conditions it is

observed that if IFij] is symmetric, then so is F(tl, 2 ). Further, considering

the expression for arbitrary zh

Sn n a

r(t£,tz %t zaZ E ~ qj(t,') qj(t') Zh Zt
ha' Z k -1 J-1i jul

z EFjj YL Yj (4-2)
iml Jul

where yi X q 1 (t'k) 2s, it follows that F (t,,t2) is nonnegative-definite if

[rit] is. This establishes the sufficiency. On the other hand, symmetry of

[-(tl, 2 ) clearly implies symmetry of [Fi . Further, since the git) are linearly

independent on T, there exist at least n-values of t f T, may t., much that th.- matrix

[q1 (tk)] is nonsingular, for if not. the q 1(t) would be linearly dependent on T.

For arbitrary y,. let zh be defined by

(w] .q ]an []en t xsy] (4-3)

where [al f = [zi . in] and [y]T = [y, " j H n " Ience, the expression



n n n n1

Z 1 (4-4)

holds for arbitrary yj, the inequality following the nonnegative-definiteness of

F(tst2). This establishes the necessity of the conditions.

Now given that [F.y] is symmetric and nonnegative-definite, the process

whose sample functions are of the form

n

X~t) = i Z A i qj(t) (4-5)

t= I

where the Aj are random variables and E AjA1 = Fij has F"(t ,t2 ) for its covariance

function. If the qi(t) have continuous nth order derivatives on T and if their

Wronskian does not vanish on T, then the process {X(t)} can be generated by a

physically realizable system characterized by (2-3) with random initial condi-

tions and no input; i.e., as the transient response. The aj(t) in (2-3) can be

found by (2-31) and the covariances of the initial conditions are given by

[1F I = [W]' [rlj] [w] (4-6)

where [".' = E[X(t)(0) X(j)(0)] and tW] is the matrix whose i,j element is

qi(J)(o). Of course {X(t)} can alwas be generated by the physically realiz-

able system composed of n-function generators, n-multipliers with random magni-

tudes Aj, and a summing amplifier. This resolves the shaping filter problem

for this case.

While it is not directly related to the shaping filter problem, it is

interesting and worthwhile to consider the predictability of processes whose

covariance functions are of the form given in (4-1). In view of (4-5), it is

not surprising to finu that such a process is essentially predictable exactly.

In fact, if the sample functions of the process are indeed those given in (4-5),

then I-ving able to predict the future values of a sample function X(t) is just

i matter of being able to find the values of the A i for the particular sample.

function X(t) of interest in terms of the observed values of X(t). Now if the

i(t ) are linearly independent on some interval observation I C T, then, as

before, there exist at least n-values of t f T, say t' , such that the matrix

[,I {t' )] is nonsingulard Hence, given the observed values of X(t) at the

points t', the A, can be determined exactly by the expression

A l 9 1 ( t ,; ) • •. . q n ( t ,!  - X ( t i )

.... (4-7)

Anq ( 't ) ... qn t ) X t )



A
and thus the predicted value X(t) given by

A -I
X(t) = [ql(t) . qn(t)J qt)... q(t!) X(t)

q" t 9"(t") x('1 (4-8)

A

equals X(t) for all t f T. Since this will be true for every sample function

of the process, it follows that X(t) = 1(t) with probability 1 for all t e T.

Even if the sample functions of the process are not known to be of the form

given in (4-5), as long as the covariance function of the process is the same,A

the predicted value X(t) still equals X(t) with probability 1 for all t 6 T.

To prove this, it is sufficient to show that EIX(t) - x(t)1= 0. Now

A A' A
EIX(t) - X(t)12  = F(tt) - 2E X(t)X(t) + E X 2(t) (4-9)

A
Computing E X(t) X(t) it is found that

E Xlt) Xlt) = [91(t) ... 9,(t)] ( - PitS, t)

jtk • (4-10)
Ant[ , t)

and from (4-1) it follows that

[' t; q1(t)

= ](4-11)

lt"',  t) q (t)

Substituting (4-11) into (4-10) and making use of (4-1), it follows that
A A2

E X(t) X(t) = F(t, t). Similarly, it is also easily shown that E X (t) =

F(t, t) and hence EIX(t) - X(0l1 2 = 0 for all t e T. Thus it has been shown

that if the q,(t) are linearly independent on an observation interval I. then

the process is predictable with probability 1 for all t e T by a linear con-

bination of n-observations of X(t) on the interval I. Since the qi(t) are

linearly independent on T, this clearly implies that, if a process has a cc-

variance function of the form given in (4-1), then its sample functions have

the representation (4-5) where equality holds with probability 1.

On the other hand, suppose that the qj(t) are linearly dependent on in

observation interval I. Then the sample functions of the process have the

representation
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r

X(t) = qt(t) * r < n (4-12)
t=!

for t C I where the q,(t)(i = ,....,r) are linearly independent on I and the

Bi are linear combinations of the A1 ; the equality in (4-12) holding with

probability 1. Now, suppose the process is predictable with probability 1 for

all t c T in terms of a linear combination of values of X(t) for t C I. Then

the representation (4-12) holds for all t C 7'. But, providing [r,] is

positive-definite, this contradicts the assumption of linear independence of

the q1(t)(i=l,....,n) on T. This result is the converse of that of the preceding

paragraph for the case where [rij is positive-definite. Since, if [Pjj] is not positive-
definite, the number of terms in its covariance function can be reduced to the point where

it is by defining new qj(t) as linear combinations of the original q4 (t), the assumption
of nonnegative-definiteness of [Utj] entails no loss of generality.

An interesting generalization of the above is obtained by letting n=C.

Then F(t1, t 2) is of the form

F(t 1,t 2 ) = [ "i qi (t,) qj (t 2) (4-13)
1-I j=t

Of course, in order for (4-13) to be meaningful, the mode of convergence of the

double series must be specified. A natural mode of convergence is pointwise

on T X T and this shall be the mode specified. Again, the qi(t) are, without

loss of generality, assumed to be independent on T. Using the argument used

before and letting n-w, it is easily shown that if the matrix [Fij] li, j - 1,

:... a is symmetric and nonnegative-definite for all a, then F(t, ) is a

covariance function. Now consider the processes (Xn(t)} whose sample functions

are of the form

n

Xn(t) Z Ai q1 U) (4-14)
tat

where the Ai are random variables satisfying E At Aj = Fj. Now, since for

all t

n n - 0

EIXn(t)-x. ( t)12 = E I rj qWt) qj(t) n,- (4-15)
t=*+i juu+I

the convergence to zero in (4-15) being a consequence of the convergence of

(4-13), the X,{t) converge in the mean to some limit ample functions X(t) of

a limit process {X(t)). Further, it follows that the covariance function of

{X(t)} exists and is that given in (4-13). Formally this can be stated as

U

-.a) X (t) = At qj(t) (4-16)
tin
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This resolves the shaping filter problem for this generalized case.

Turning now to consideration of the predictability of processes whose co-

variance functions are of the form given in (4-13), a result analogous to that

given above for n < c is fairly easily established providing certain additional

mild requirements are satisfied on the observation interval I. To see how to

proceed, suppose for the moment that the sample functions of the process are of

the form given in (4-16). Then formally, if there existed a set of functions

fi(t) such that f, fi(t) qj(t) dt = Sip the A i could be found by multiplying

both sides of (4-16) by the fi(t) respectively and integrating over the obser-

vation interval I. Once the A i have been determined, the predictability follows

immediately. Now the additional requirements mentioned above are just those

needed to rigorously justify this procedure in general [that is, even when it is

not known a priori that the sample functions of the process are of the form given

in (4-16)]. This motivation leads formally to the consideration of
n

A

Xn(t) = L' qi(t) f, f,(t) X(t) dt (4-17)

as a predicted value of X(t) where hopefully the error of prediction goes to

zero as n -o.

Specifically, assume that the qi(t) are linearly independent on I in the

sense that for all finite n there exists no set of constants a i not all zero

such that I ai qi(t) = 0 almost everywhere on P and that f, q2(t)dt <i=!

for all i. Then as shown in Appendix I there exists a set of functions .f(t)

defined on I such that f, ff(t) dt < u for all i and f, fi(t) qj(t) dt Sq.

Finally, assume that one of the following statements is true: Either )

n 
c

1 Fij qi(tl) qjtt 2 ) f S,(t,) almost everywhere on I for all n and all

n

t 2El and I .I i ) q(tl 2 ,, Ut ) almost everywhere on I for all n, j where

S,(t,) and S 2 (t2 ) are integrable on 1, or (ii) fF2( tI,t 2 ) dtI < D and the

ft 0
series I I Fij q(tl) q(t 2 ) converges weakly to ""(tt,t) on I for all t2 l

and J'iXlF 2Ct20 tI) SIt, dt2 < w and the series X X F'iJ qi(tI) qJ(t 2 ) converges

weakly to F(t,.t ) on I x I.*" Under these assumptions consider the expression

A t12 A A ^2 t

EIAC:) - X"td 2  = r(t,t) - 2EXn(t) Xt) + E Xn~) (4-18)

Note that this definition of linear independence differs slightly from the classical defini-
tion used above for the case where n < a .

•Note that convergence in the mean implies week convergence, [18, p.175].



A

Computing E Xn(t) X(t) there results
n

A
E x(t) X(t) = L j q,(t) f f(7)r(7,t) d

i
n

E q,(t) t Z r qj(t)f' f,(r) q,(T) dr
jai Jui ju

n m

z z Fjj q(t) qj(t) - F(tot) (4-19)
(I yal ?I OD

the interchange of order of summation and integration being justified by the

assumption of bounded convergence or weak convergence of the relevant series.A2

Similarly, computing E Xn(t) there results

EnX(t) = z q{(t) qj(t) f, aT,' d 2 f('r, fj(r2)r(7, *-2)
f1 drj. ' 2  f~r)rq(rr)

- qi(t) qj(t) f, d7T, Z f (7 1 q 4(7-
(jot htta

fldr2 fj(r 2
) qt(r,)

n n

Z rZi qj(t) qjt) - -  F(t, t) (4-20)
(-t jn"

Hence,

A

EIX(t) -X (t)12 ->O, all t f T (4-21)

which proves that under the above mild assumptions, processes whose covariance

functions are of the form given in (4-13) are predictable in the mean. As before,

linear independence of the qj(t) is of crucial importance; it being used in the

proof of the existence of fj(t) which satisfy f, fi(t) qj(t) dt = Sj.

The above result includes as a special case, two classes of processes which

are known to be predictable in the mean for any nondegenerate observation inter-

val 1CT; namely, those with analytic covariance functions and those stationary

processes whose spectral distribution functions are step functions. Finally, it

is interesting to note that if one has expanded what Wiener calls an innovation

process; e.g., a stationary process with absolutely continuous spectral distribu-

tion function, in an infinite series over an interval T by the Karhunen-Loeve

expansion theorem or by any other method leading to reasonably convergent series

for ru(t,t .). then while the qj(t) in the expansion are linearly independent on

T, they cannot be linearly independent on any proper subinterval of T. If they

were, the process would be predictable in the mean in terms of values on the sub-

interval which contradicts the assumption that the process is an innovation pro-

cess.



4.3 THE "ALMOST STATIONARY" CASE

Another case for which the shaping filter problem can be resolved by

elementary methods is that where r(ttt) is of the form

F(t ,t2  ) D i lt " 2 1 + co • efi 2 (4-22)
isl t=I jut

where Rea. > 0 and the ai and D i are real or occur in complex conjugate pairs.

Here, assuming for the moment that F(tl,t 2 ) is a covariance function, the non-

stationary character of F(tlt 2 ) arises solely due to transients which die out

as tl.t 2 - w , the corresponding process being asymptotically stationary.

Now a sufficient condition that "(t ,t 2 ) be a covariance function is that
n a i Ir

the Fourier Transform of X D i e be everywhere positive and the matrix
two

[CiJ] be nonnegative-definite. In this case one can find, by the usual method
n , - a i l d ,

of factoring the Fourier Transform of I D a weighting function for
il

a shaping filter of the form
n

W(.)= , T 0 (4-23)

0 r r<0

whose corresponding inverse is stable. If a white noise process is applied to

the shaping filter at t = 0 with the shaping filter assumed to be at rest at

t = 0, then the covariance function FI(tit 2 ) of the output process is

n .lt,.tz I  n d i d -a t I- d t2

FI(t It* ) = D i  - (4-24)is i2. I a, +  aJ

n n d i di - C• t o e-aJ t 2 i o a i n e f n t o
Note that the function I d d e t  is a covariance functinilIa it + a i

on T x T. This follows from the fact that if a white noise process is applied

to the shaping filter over the remote past and then removed at t = 0. then the

covariance function of the resulting transient output process for t > 0 will be

n n d i d - . t o - .r
1 a e e• . Subtracting (4-24) from (4-22) there results
i.lj.= ai + aj

n n

2tIt 2 )  E Z r a  Z2 (4-25)
i.1 j-o

which, by the assumptions made on (C] . is a covariance function. Making use
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of the results of Section 4.2, this establishes that with a white noise source
and a set of random initial conditions which are uncorrelated with the white
noise source, a process whose covariance function is of the form given in (4-22),
can be generated by the system whose weighting function is that given in (4-23).
Of course, even if the matrix [Cij] is not nonnegative-definite, the result
still holds as long as [rjj] is nonnegative-definite.

4.4 THE "NONDEBENEIATE" CASE

The final case where the shaping filter problem can be resolved by
elementary methods is based on consideration of (3-3). Suppose that one were
given a function r(t15t ) expressed in the form given in (3-4) where each of
the pi(t) is a sum of at least n-terms. Suppose further that upon division of
pi(t) by qj(t) andpj(t)by qj(t), it happens that the resulting sums have a term in

common. Then by (3-3) it might be assumed that this term is f tdt13(t)Pj(t)
0

+ r j. If this happens for all j i, then the one term of pi(t) which, after
the appropriate division, did not appear to be a term which pi(t) had in common
with some pj(t) might be assumed to be qj(t)( ft APC) dr + r If it were,

0
then 16(t) could be found by dividing it by qi(t), differentiating with respect
to t, and taking the square root of the resulting derivative. Once the ki(t)
have been determined, the determination of the r is obviously trivial.

Whenever the procedure sketched above works, it will be said that one is
dealing with a nondegenerate case. At first glance it might appear that this
is indeed a special case since, for example, stationary processes and almost
stationary processes are clearly degenerate cases. However, there appears to
be a reasonably large class of nonstationary processes which lead to nonde-
generate cases. For example, consider the case where r(t 1 t, ) is

t [t:/5 + t 9/7] + t2 t/7 + ,1/9ot] z

nt ,t 2 ) (4-26)
+ t/7]+ t2 [8/7 + i1/9] -- /--2a, I>t

Here

qj(t) = t , pl(t) = g 4 + t9/ 7

qg(t) = t2 , PI(t) = t5 l7 + tW1 9 (4-27)
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Upon dividing p,(t) by t2 and p 2(t) by t, it is observed that t71 7 is a common

term. Hence, t"1 5 appears to be ql(t)(f d 62('r) + Ff1]. Proceeding under
0

this assumption, it is found that 813(t) = ± t2 and I = 0. Similarly, it is
t

found that 182(t) = * t4 and F22 = 0. Letting t9 /7 = q2 (t)[f drkT,/(')p 2(7i] + I1 2,
0

it is found that this relationship is indeed satisfied if 112 = 0 and similarly

for t6/7 . Hence, the weighting function of an appropriate shaping filter is

W(t,7) tT 2 + t2 4  t > T > 0

0 , t < T (4-28)

There does not appear to be any simple criterion for determining whether

a given function F(t,, t2 ) is the covariance function for a nondegenerate case

short of attempting to carry out the above procedure. Since the procedure is

rather simple and direct, it is reasonable to just proceed as if it were a

nondegenerate case and, if it fails at some step, then one concludes that he

is dealing with a degenerate case and a more complex procedure is required. If

it works, the shaping filter problem has been resolved rather easily. As the

example shows, sometimes nonstationary cases are easier than stationary cases.

Note that when it works, the above procedure always yields a physically

realizable shaping filter. Also note that after the FPj have been determined,

it is necessary to check and make sure that the matrix (rij] is nonnegative-

definite and, hence, represents the covariance matrix of a set of random initial

conditions on the shaping filter.



CHAPTER 5

SOME FUNDAMENTAL RESULTS ON

EXISTENCE AND UNIQUENESS

5.1 INTRODUCTION

As is well known, physically realizable shaping filters do not, in general,

exist for processes with arbitrary covariance functions. For example, as pointed

out in Section 1.2.1 for the stationary case, physical realizability of the shap-

ing filter requires that the spectral distribution function be absolutely con-

tinuous and satisfy the Paley-Wiener criterion given in (1-13). Apparently no

simple criterion analogous to that of Paley and Wiener has been developed for

the general nonstationary case. This is not too surprising considering the

difficulty of the problem. In this chapter, the question of the existence of

physically realizable shaping filters is investigated for the class of separ-

able covariance functions, and for this class, it is shown that, providing one

remarkably simple requirement is met, a physically realizable shaping filter

does indeed exist. In addition, the question of uniqueness of the shaping

filter is also discussed. The restriction to the class of separable covariance

functions certainly seems reasonable in view of the fact that in this case th3

resulting shaping filter is usually rather easily realized physically. This is,

of course, of extreme importance in engineering applications.

It is rather interesting and enlightening to examine the treatment of this

question for the nonstationary case by the authors whose work is summarized in

Chapter 1. Darlington was apparently well aware of the problem and did provide

answers for two rather restrictive cases. They were restrictive in the sense

that he assumed physical realizability of the underlying signal and noise-shaping

filters and either periodicity or regularity at c of the corresponding differential

equation. His answers clearly leave much to be desired. Batkov simply avoided

the problem by making implicit the assumption that the covariance function was of

the required form (a trick quite commonly used in writing technical papers). One

wonders if he was even aware of the problem. Leonov wasn't concerned about

physical realizability of the shaping filter (and didn't discuss or obtain it)

because it wasn't required for his application. Actually, for his application,

he didn't need shaping filters at all.

Finally, it should be noted that physical realizability of the shaping

filter is automatically achieved for the special cases discussed in Chapter 4.
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5.2 CASTING AND RECASTING THE PROBLEM

Neglecting initial conditions for the moment, establishing the existence

of a physically realizable shaping filter amounts to establishing the existence

of a solution of the nonlinear Volterra integral equation of the first kind

t 2

r(t,,t 2 ) = f d7 W(t r) W( t 20) dr , tI > t2 >0 (5-1)

0

When the covariance function is separable; i.e.,

n

I(t t 2) = Z q (t1 ) pi(t 2 ) ; t 1 > t 2> 0 (5-2)
tal

it is reasonable in view of Chapters 2 and 3 to consider solutions of the form

n

(Z q j( t),6j (T) ;t > Ir> 0

W(tr)

0 ; t < r (5-3)

In this case, the integral equation becomes

n n n t2

qZ(t1 ) p( 2) = q(t,) qj(t2) f d- PB('r) Pj(Cr) (5-4)
t=l t=l j.l 0

and upon making use of the linear independence of the qj(t,) and adding on

initial conditions terms, there results

n t -

pilt) = qj(t) ) + d-j ; t 0 = 1; ... , n

(5-5)

Thus for the case of separable covariance functions, the problem has been re-

duced to establishing the existence of a solution of the simultaneous nonlinear

Volterra integral equations of the first kind given in (5-5). This certainly

represents a reduction over (5-1) since (5-1) actually represents an infinite

set of simultaneous integral equations, one for each value of t.

The usual procedure in the study of Volterra integral equations of the

first kind is to first convert the integral equation into an integral equation

of the second kind and then apply the standard techniques known for Volterra

integral equations of the second kind. For linear equations, this conversion



19

is easily carried out, [25,p.16]. That such a procedure can also be carried

out for the equations in (5-5) is perhaps not obvious, but nevertheless it

can be accomplished as follows.

Upon differentiating the equations in (5-5), there results

n n

pi'(t) = qj '(t) f d/,6(3,j(/") + Fij + fii(t) Z 9j(t)pj(t)

(5-6)

Now examination of (5-6) shows that the multiplier of 46(t) is the same for

n n
all i; namely, I qj(t)/3j(t). Let k(t) = 7- qj(t)jj(t). The only problem

jai jo-

is that k(t) is unknown. If k(t) were known and nonzero for all t > 0, then

the desired conversion to integral equations of the second kind would be

complete upon division by k(t). While at first glance it may appear that,

since k(t) involves the unknown fii(t), there is no hope of being able to

determine it, it can be determined. Solving (5-6) for /3i(t) it is found that

,31t) = k'l(t){p '(t) - i ql)(t) [ d r8 i( r)/3j() + Pi j (5-7)

Substituting back into (5-6) there results

n t

Pj t) Z 9 q~t) f drfij (Tr)P3 (1) + r =
jul 0

k'2(t) (1)(t) - q(lt) dT/i /T)j3(T) + Pij x

X( qjIt) Ptll(t) - qj(t) qgl)t) fdr+(rl/3hl) r,,,

(-8)

which, upon cancelling and rearranging, yields

n n n

k2(t) Z 9 (t) PJ''(t) - Z qj')(t) 9 q(t) X
Ju lt tt

[f d-rJ1(7l)6 (r) + rj, 
(5-9)

0 ]

But the second term in (5-9) is just ph{t) and hence
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k(t) = _ q~)p 1 ()-q 1 ()Pft](5-10)

Thus k(t) can be determined from r(tlt 2 ). Making use of (3-4) and (3-6),

k(t) can be expressed in the form

k (t) P (  t t - ' )(t' )) t = ± V J ( ) (5-11)

It is quite important to note that if the Pj(t) are to be real then (5-7)

together with (5-11) requires that J0, (t) > 0 for all t > 0. This completes

the conversion of the integral equations of the first kind given in (5-5) to

integral equations of the second kind as given in (5-7).

Of course, there still remains the problem of what to do in case k(t) 0 0.

In this case, the equations given in (5-6) reduce to a set of integral equa-

tions of the first kind of the form given in (5-5) with q4 (t) and pi(t) replaced

by qj1 i(t) and plli(t) respectively. Hence, the logical thing to do is to

re-apply the conversion procedure used in the previous paragraph on (5-5).

When this is done one obtains

n
k( p(t) ( - q))( f + r,j

j=l 0

(5-12)
where

k 1(t) ± q~'iU) pl23 (t) - q 21(t) p'i(t) = ± 4 2t)

(5-13)

For the same reason as before, it is required that J 1,2 (t) > 0 for all t > 0.

Naturally, if k1(t) _ 0, then one re-applies the procedure to the new equa-

tions etc.

When k(t) = 0 [or ki(t) = 0. etc.) for some values of t but not identically,

then one is dealing with a more complicated type of integral equation which

Picard called an equation of the third kind. Such cases have been studied for

linear equations by Lalesco (26].

The problem now has been reduced to establishing the existence of a solu-

tion of the integral equations of the second kind given in (5-7). To do this,use
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will be made of some results due to T. Sato [27). Since Sato makes use of

Schauder's fixed point theorem in his treatment of existence questions, a short

discussion of fixed point theorems is in order.

5.3 DISCUSSION OF FIXED POINT THEOREMS

The basic idea underlying fixed point theorems can be nicely demonstrated

by the following simple example [28, p.118]. Let C be the set (X : 0 < X < 1)

and let (X) be a continuous, single-valued transformation of C into itself (i.e.,

o(x) is a continuous, single-valued function defined on [0,1) for which a(x)e[0,1

for all ze[0,1]). Then there exists an zoeC such that xo = O(Zo). X0 is called

a fixed point for the transformation a(x). The truth of this result is obvious

from Figure 2.

------------

N'(O) -

0 Xo

FIGURE 2

It is also obvious that x. may be either 1 or 0 and that it is not necessarily

unique (there are four fixed points in Figure 2).

The generalization of this simple result to more general sets C in more

general underlying topological spaces has led to the development of rather power-

ful (fixed point) theorems for establishing the existence of solutions (fixed

points) of functional equations in general and integral equations in particular.

For integral equations C becomes a class of functions and a is an integral

operator; e.g., the right-hand side of (5-7); and asserting the existence of a

fixed point for o is clearly equivalent to asserting the existence of a solution

of the corresponding integral equation. One of the most general fixed point

theorems and the one apparently used by Sato was proven by Schauder and can be

stated as follows: [29, p.260].

Scbamderls Tbeorem: Let C be a nonempty, compact, convex set from
a locally convex space X and let o be a continuous, single-valued
transformation of C into C. Then there exists an XoEC such that
a(so) = 20.
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In applying Schauder's Theorem, the essential problem is, of course, to find an

appropriate class C for the problem at hand.

It is interesting to note that the requirements of compactness and convexity

of C stated in the theorem could have been anticipated on the basis of the simple

example given above.

5.4 BiOLUTION OF TEE EXISTENCE PROBLI

Because Sato's treatment of the existence of solutions of the integral equa-

tions he studied is rather sketchy in nature, a development of it is given below.

The development is essentially that given by Sato except that many of the obvious

(to Sato!) steps are filled in, an error is corrected, and the appropriate space X

and set C are clearly defined. The theorem resulting from this development is then

applied to the set of integral equations given in (5-7) and the existence of

physically realizable shaping filters is thereby deduced.

The following notation will be useful

If: the closed interval 0 < x5 r

Ar: the closed domain 0 < t < x < r in the plane (x,t)

D: the closed domain in the space (x,tu 1 ,.,..,u,)
defined by (zt)e ArIu: - fi(z)I p where the
f,(Z) are continuous functions on I, and p/2 > ',x
[ax fi(x) - in fi(z)] > 0
If Ir

(For any p > 0 there is obviously an I, r > 0
such that the latter inequality is satisfied.)

Now consider the set of integral equations

X
uj(x) = fj(z) + f Ki[xt,Us(t), ... , u(t)dt (5-14)

0

where Ki[zXtu 1 .... un) is continuous on D. Hence, there exists an M such that

jKj[s tou t , .f,., u) I <NM for all i and all (z& tu 1, ... 0 un)eD. Let u(x) be
the vector-valued function whose components are uj(z). Having made the above

assumptions, the problem now is to find a space X and a set C which satisfy the

hypotheses of Schauder's Theorem.
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Let X be the space of all continuous vector functions u(z) on 1~. and let

X have the topology of uniform convergence on compact (i.e., on all compact

ubsets of Id) 30, p.226. Then X is clearly a locally convex space. (For a

definition of a locally convex space ace [29, p.257].) Now, let F be any set

of vector functions u(z)cX which satisfy the conditions

lu,(z) - fj(x)I < p/2 ;uj(O) = fj(O) (5-15)

on I1Where r' =min (r, p/2M). Then the right-hand side of (5-14). considered

as a transformation a, obviously transforms F into a set F of vector functions

iJ'(x)EX which also satisfy (5-15) on I.,. Furthermore, the set F is seen to be

equicontinuous on 1.1 (in fact, T is uniformly equicontinuous on Id.. Hence,

for every e > 0, there exists a S(e) > 0 such that for all i(x)eF,luj(x1 ) -

uI(X 2 )1 < E for every x~s X24EI7 , salisfying lI, - Z21 < SWE. Let C be the set

of all functions u(x)CX which satisfy (5-15) and are such that lij(xi) - iz)

< C for every x,, 12 OE It., satisfying lXI - x21 < 8WE. Then 0, clearly trans-

forms C into itself. Furthermore, C. being equicontinuous, is compact by Ascoli's

Theorem [30, p.234] and is easily seen to be convex. Finally, since the

Ki(xt~uI& --., un] are continuous on D and D is closed, they are uniformly

continuous on D. Hence, - is a continuous transformation of C into itself and

is clearly single-valued. Thus, by applying Schauder's Theorem the following

result is deduced.

Theorem 1: Let fj(z) be continuous on I. and let K~i[X't..u 1 ...Sun]I on D. Then

on Ii.) there exists at least one continuous solution of the integral equations

given in (5-14) where r' =min (r, p/2U).

Of course, Lte solution of (5-14) can be extended to 17 or to the boundary

of D by the standard argument.

Bly a straightforward application of the above theorem to the sct of inte-

gral equations given in1 (5-7), the following important theorem is easily

deduced.

Theorem 2: Suppose that [i(t ~ 2) is of the form given by (3-4). that q! 1(t)

slid p~ ( t ) exist alid are continuoub onl [0j)', that J0 M(t '0 oil [0,TI , idd
O''I

that there exists a nonnegative-definite matrix [1'.~ .1Such that j',jO)-

h2qj( 0) 0 for all i. T Iieu i V(t I , 2 is a c o vari a n ce f un c tioni oni [ 0 , ] aikd

there exists a phaysically realtzable shaping filter on [0,T] whose weightisg

fuiiCtI on its of il formi giveii in (2- 19) where Lte ipi( t ) are cont inuous on

(0,T].
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The only possible difficulty with the application of Theorem 1 to Theorem 2

is that it may be impossible to extend the solution to [0,T] without leaving D.,

Since D itself (for (5-7)] can be increased in the u4 coordinate directions and

still meet the requirements of Theorem 1 indefinitely, thia implies that either the

solution can be extended to [0,T) or else the A8(t) become unbounded and, hence,
discontinuous. In the statement of Theorem 2 and in those to follow, it has been

assumed that it is possible to extend the solution to [0,T]. In any case, Theorem

2 holds on [0,TX] where p/2M < T' < T. Cases where the Aj(t) are unbounded are
not of great importance in engineering applications and, furthermore, computational

problems arise in these cases anyway.

When J0 ,,(t) m 0 on [0,T) but J,, 2 (t) > 0 on [0,T], then the following

modified form of Theorem 2 holds.

Theorem 3: Suppose that F(tist 2 ) is of the form given by (3-4), that q(2 )(t)

and p( 2 )(t) exist and are continuous on [0,T], that J1 ,2 (t) > 0 on [0.J], and
n

that there exists a nonnegative-definite matrix [Will such that p1 (0) -
'=,

n

qj(O) = 0 and p1)(0) - £ fljq~')(0) = 0 for all i. Then F(t,st 2 ) is a co-
Ii

variance function on [0,T] and there exists a physically realizable shaping

filter on [0,T) whose weighting function is of the form given in (2-19), the

/3j(t) are continuous on [0,j], a-d W(tt) - 0 for te[0,T].

The further modification of Theorem 2 when J0 ,1(t) = J1, 2(t) a 0 on

[0,T] but J 2 ,,(t) > 0 on [0,T] is obvious. The case there J0 ,1 (t) = 0 for

some tf[0,T] but not identically is not discussed, but satisfactory results

could possibly be obtained by following up Lalesco's work [26].

Finally, suppose that in addition to satisfying the hypotheses of

Theorem 2, the qj(t) and pi(t) have n-continuous derivatives on [0,j] and

the Wronakian of the q,0) doesn't vanish on [0,T]. Then by successive dif-

ferentiation of Equations (5-7) it follows that the /Ji(t) have n - 1 con-

tinuous derivatives on [0,T]. Hence, by the results in Section 2.4, it

follows that the shaping filter can be characterized by a differential equa-

tion of the form given in (2-1) where the ai(t) and b (t) are continuous on

(0,'.

5.5 THE QUESTION OF UNIQUENESS OF THE SHAPING FILTER

Having resolved the question of the existence of a physically realizable

shaping filter, the question of the uniqueness of the shaping filter naturally

arises. Examining (5-5), it is clear that there is no unique solution because



if W(tr) is a solution, then -W(t,r) is also a solution. Note that if W(to) is

the solution associated with the plus sign in (5-10), then -W(t,,) is the solu-

tion associated with the minus sign. However, the question still remains as to

whether the solution is unique, say, to within a multiplicative factor. The

answer is again no because there may be more than one nonnegative-definite matrix

(rF1q which meets the requirements of Theorem 2 and which lead to different

solutions. As an example, consider the covariance function

F(t 1,4 z  = 4/3 et - 5/12 e1 tI - t 2  t, t2  0

The two matrices

[rli]= [ 2 2 , [ - 20/3] Jo,1(t) 1- 2/3 1/4J -20/3 25/4J °lt

Both meet the requirements of Theorem 2. Furthermore, and as direct substitu-

tion into (5-7) shows, 6,(t) = 2et and 6 2 (t) = - • t is a solution on [0,w] for

[F ] while 13,(t) = - 4et and 632(t) = 5e2t is a solution on [0,co] for [P J].

Hence, W,(t, } = 2e"(t'.) - e-2(t-r ) and W2(tr) = - 4 e - (t-') + 5e 2( t- are

respectively the weighting functions of the physically realizable shaping filters

for these matrices. Taking the Laplace transforms of W,(t - ') and W2 (t - T)

there results G(S) = S+ 3 + 2 (S + )S +2)" It is interesting
(S + M)S +2)( 1(S )

to note that the transfer function of the system associated with [r'ij] has

its zero in the left-half plane while that associated with [F'j] has its zero

in the right-half plane. In light of this example, the question now arises

as to whether the solution is unique if, say, the plus sign in (5-10) is used

and a matrix [ij] is specified which meets the requirements of Theorem 2. The

answer this time is yes as the theorems proven below show.

Suppose that in addition to satisfying the hypotheses of Theorem 1, the

Ki[xtu, ..... un]/aui are continuous on D for all i,j. Then, since D is

closed, they are bounded on D. By the mean value theorem, this implies that

a Lipschitz condition is satisfied on D; i.e., that there exists an M, such

IIK[xt~u,, ... , u,11 - Ktztv, ... , v"]11 MIlu - V11 where Iu - 11=
n

5: Iuj - v.I, etc. Under this stronger assumption, the existence of a solution
'El

to (5-14) on 1.1 can be established by successive approximations as follows.

Let u°Cx) = f{x) and uJ+|(z)
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X

i() = f,() + 0f Ki,t,.u.(), ... , u(t)] dt (5-16)

Then udW(x)ED and is continuous for e IF as is easily established by induction.

Furthermore
x

11uJ+'(Z) - ui(X)II <N, f IluiJ(t) - uJ'(t)lidt (5-i7)
0

and

X

IIu'W) - uO(X)11 f I IKx, ,s,(f), .... f t(f)]I dt (5-18)
0

< nM z

By iteration, using (5-17) there results

lluj'(X) - uJ)ll flnM MI X1 (5-19)
(j+ 1)!

Hence, the series 2 lluJ+,(x) - uJ(x)ll converges uniformly on I., which in
J0o

turn implies that uJ(x) converges uniformly on I., to a continuous vector func-

tion u(x) which satisfies (5-14). The uniqueness u(x) can be established as

follows. Suppose v(x) is another solution of (5-14) in D on I,. Then, it

follows that (making use of the Lipschitz condition)

X

Ijuj+'(x) - VW)i < M, f Ilu.(t) - v(t)II dt (5-20)
0

Again, using the fact that IluO(z) - v(x)ll :S n x, by iteration

nM N xi 1

I1uj'(X)- t4X)II n M + 1)' (5-21)

which on letting j - w implies that I Iu() - v(x)II < 0. Hence, u(x) = v(x)

on Ir, and the solution is unique. This proves the following theorem.

Theorem 4: If the hypotheses of Theorem I are satisfied and in addition

Kj[zt,u1, .... u,]/aui are continuous on D. then there exists a continuous

solution of (5-14) on I.1 which can be found by successive approximations aid

the solution is unique.

As before, the solution can be extended to I. or to the boundary of D by

the standard argument. Application of Theorem 4 to (5-7) yields immediately

the following important theorem.



Theorem 5: If the hypotheses of Theorem 2 or Theorem 3 are satisfied, then

a physically realizable shaping filter exists on (0,T) and, if the sign in

(5-10) is chosen and the matrix Fil] specified, the shaping filter is unique.

This concludes the discussion of existence and uniqueness of physically

realizable shaping filter.



CHAPTER 6

COMPUTATIONAL ASPECTS AND APPLICATIONS

6.1 COMPUTATIONAL ASPECTS

Since the engineer is usually interested in synthesizing shaping filters

for use in applications, he is faced with the problem of actually finding the

weighting functions and/or differential equations characterizing them. Except

for certain special cases such as stationary processes over the interval (-Wo0)

and those discussed in Chapter 4, the determination of the /3(t) (or the coef-

ficients of the corresponding differential equation) analytically appears to be

a very difficult, if not impossible, task. Thus, one is naturally led to the

consideration of computational methods. A few remarks on this aspect of the

problem are given below. One of the practical justifications of the work in

Chapter 5 which is apparent here is that it establishes the existence of a

solution and its uniqueness properties at the outset of the problem, thereby

guaranteeing that one is not trying to compute something that does not exist.*

In view of Theorems 4 and 5, one of the immediate methods which come to

mind for computing the P3 (t) from (5-7) is that of successive approximations.

This, of course, can be done on either a digital or an analog computer.

Standard references on numerical methods such as Hildebrand [32] discuss the

problem from the standpoint of digital computation and it will not be discussed

further here. In a recent article, Tomovic and Parezanovic (33] have inves-

tigated the use of repetitive analog computers for solving integral equations

by successive approximations. The interested reader is referred to this article

and those referenced therein.

Since the integral Equations (5-7) are of the Volterra type, they can

also be integrated directly either digitally or on an analog computer in much

the same manner as differential equations for one point boundary value problems

are integrated. This is perhaps a better over-all computational procedure than

successive approximations. Finally, Equations (5-5) can also be solved on an

analog computer by implicit methods.

While a great deal of effort could be spent on developing optimal compu-

tational algorithms for integral equations of the type given in (5-5) and (5-7),

it appears that the standard techniques mentioned above are adequate considering

the need.

Of course, the work in Chapter 5 is justifiable in its own right because of, among other thisga,
the insight it gives into the structure of certain classes of stochastic processes.



6.2 APPLICATIONS

The two main areas of application of shaping filters are to the analysis

(usually on analog computers) of the effects of noise on linear systems and to

the design of linear least-squares, smoothing and predicting filters. While

these applications are well known, a short presentation of them will be given

in the interest of completeness.

The first application is to the problem of finding the variance of the

output of a linear system when the input is a stochastic process whose covariance

function is known. This problem reduces to the computation of an integral of the

form

t ta2(t) =f drI f dr-2 W(twr, M t,rz2)F(,r , , .rT )  (6-1)

o 0

where W(t,-r) is the weighting function of the system, F( ,I-2 ) is the covariance

function of the input process, and o2(t) is the variance of the output process

as a function of time. When a shaping filter exists for the input process, then

(-r F) f dOI f dO2 W.(rof,)W.(r 2.. 2 )6(0, -82) +
0 0
n n

+ F1ij q1 (-1 ) q ( r ) (6-2)
al jai j

Substitution of (6-2) into (6-1), interchanging the order of the integrations,

and integrating out the 8 function yields

a
2 (t) = t dO[f td7 W(t,7-1 ) WS (r,O)

00

t

X f dT2 (tT 2) qj(72) (6-3)

0

The term in square brackets in (6-3) represe'nts the weighting function, IUt,O),

of the cascade of the system and the shaping filter. The computation of the

first integral in (6-3) is easily carried out on an analog computer by the

method of adjoint systems described in Laning and Battin (20] when the system

is characterized by a finite-order linear differential equation, the covariance

function is separable, and the Wronskian of the qi(t) exists and doesn't vanish

on the interval of interest. The other terms in (6-3) can obviously be computed
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separately with part of the same analog setup. The restriction to separable co-

variance functions and the nonvanishing of the Wronskian of the qi(t) allows the

shaping filter to be simulated as shown in Figure 3, where the aj(t) are given

by (2-31) and the Fi(t) are given by [making use of (2-26)]

n

Fr(t) = j ) B,(t) (6-4)jul

FIGURE 3

Note that no differentiability is required of the ,L'(t) for this form of

simulation which in turn requires only continuity of first derivatives of

p1 (t) to guarantee continuity of the Pi(t) and, hence, continuity of the

FF, ())

The other area of application of shaping filters is to the design of

linear* least-squares, smoothing and predicting filters. The usual formula-

tion of this problem leads to the Wiener-Ilopf integral equation

F2

rDI(tl t2 ) f d6 W(t,.&) r,1( .t,) ; t 1 , .), 0 (6-5)

0
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where r(tt, ) is the covariance function of the desired signal at the

present time t, and the input at time t2 , F11 (Ot 2) is the covariance function

of the input at time 9 and time t2, and Wt,9) is the weighting function of

the desired least-squares filter. When the input is a white noise process,

then FI(O,t2) = 8(9 - t2) and (6-5) can be solved immediately, yielding

rFJ(tI,t 2 ) ; ti > t2 _> 0
W , t2 ) =

0 ; ti < t2  (6-6)

The basic approach used above can still be used even when the input is

not a white noise process providing there exists a physically realizable

linear system (called an inverse shaping filter) whose response to the input

will be a white noise process. In this case, following the Bode-Shannon idea,

the input is first operated on by the inverse shaping filter yielding a white

noise process. Treating the output of the inverse shaping filter as a new

input process and applying the result of the previous paragraph one obtains

{Di?(ttt 2 ) ; tt > t2 > 0

WUt,t 2 ) (6-7)

0 ; t i  < t2

where

t2
FDir U 1,t2 ) =f dr WV (t2,r) FDi(t,,r) (6-8)

0

Here Ws'(t 2,) denotes the weighting function of the inverse shaping filter.*

Hence, the weighting function of the least-squares filter is given by

ti

C t1 t 2  f dr W. ,.(tI)[w;(r, t 2 )] a  (6-9)
t 2

For cases where there exists a shaping filter which is characterized

by a finite-order linear differential equation, the differential equation of

the inverse shaping filter is immediately found by interchanging the role of

input and output. Also, in this case, the integral in (6-8) is easily eval-

uated on an analog computer. When fDI(t,,t2) is separable. then W(t,t 2) is

separable and, assuming the requisite differentiability, the least-squares

If one is operating over an infinite interval, then the inverse shaping filter must be stable in
the usual sense. For a finite interval, stability in the usual sense loses its meaning and
importance.
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filter is characterized by a finite-order linear differential equation which

is easily simulated (or built) from analog components.

From the above it is clear that if the differential equation of the

shaping filter is known, then the solution of the least-squares filtering

problem is greatly simplified. For further discussion see Darlington [9).

Kalman and Bucy [34] have given an alternate solution to the least-

squares filtering problem assuming that the shaping filter for the signal

is known and the noise is white noise.* As before, the solution makes use

of an explicit knowledge of the differential equation of a shaping filter.

It should be noted that, if random initial conditions are required

on the shaping filter, then, the approach discussed above must be modified.

Kalman and Bucy claim that their results hold for this case without modifi-

cation.

IThere are processes for which a shaping filter does not exist as, for example, stationary
processes with nonabsolutely continuous spectral distribution functions. Hence, Kalman
has not solved all the problems as he sometimes claims.
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APPENDIX

Suppose the qi(t) are linearly independent on I in the sense that for
n

all finite n there exists no set of constants aj not all zero such that 7
3im

a, q,(t) = 0 almost everywhere on I and suppose also that fjqg(t) dt < " for

all i. Let Y be the closed linear manifold generated by all of the qi(t);
a

i.e., the set of all functions of the form I aj qj(t) which are square inte-
t=!

grable over I or limits in the mean of such sums where the ao are arbitrary constants

and a is an arbitrary integer, I < a < O. Let i be the closed linear manifold

generated by all of the qi(t) except qj(t). Then )j and by a well known

result [24.p23) there exists a function fj(t)e,%. flf2(t) dt > 0, such that
fi(t) i k ; i.e., such that flfj(t) X q(t) dt = 0 for all q(t)dj. Since

q (t)ki for all i 0 j, this shows that there exists a functin fj(t) such that

flfj(t) qj(t) dt = 0 for i * j. Clearly frf(t) dt > 0 and fj(t) J kj implies

Iflfj,(t) qj(t) dtl > 0, and thus, by suitably norming, this establishes the
existence of a function fj(t) such that f, q4 (t) fj(t) dt 

= Bij. Since this

can be done for every qj(t), this establishes the existence of a set of functions

fi(t) which together with the q4 (t) form a set of biorthonormal functions on I.
Note that since fi(t)OL for all i, f1 fl(t) dt < D for all i. Finally, the

f4 (t) are obviously linearly independent on I in the same sense as the qj(t).


